
  

 

 

1 

 

 

 

 
 

 

Personalization at scale 
 

 

Nick Hills // Sitecore MVP // nick.hills@trueclarity.co.uk 
- 25 April 2016 

 

  

mailto:nick.hills@trueclarity.co.uk


  

 

 

2 

 

Contents 
Keeping thing simple ..................................................................................................................................... 3 

Let’s get personal .......................................................................................................................................... 5 

What do you need to personalize a page? ............................................................................................... 5 

The content ........................................................................................................................................... 5 

Information about the user .................................................................................................................. 5 

The rules ................................................................................................................................................ 5 

Where to show the content? ................................................................................................................ 6 

When to show the content? ................................................................................................................. 6 

How to show the content?.................................................................................................................... 6 

How to enrich the content? .................................................................................................................. 6 

Where should page composition occur? .................................................................................................. 6 

Where to run the rules? ............................................................................................................................ 7 

At the server per request ...................................................................................................................... 7 

Pre-generate the permutations ............................................................................................................ 7 

Distributed ............................................................................................................................................ 8 

At the client ........................................................................................................................................... 8 

What to store in each scenario? ............................................................................................................... 9 

How to pick what’s best for you? ............................................................................................................... 11 

How can parameters be so important? .............................................................................................. 11 

tl;dr .............................................................................................................................................................. 11 

About........................................................................................................................................................... 12 

 



  

 

 

3 

 

Keeping things simple 
Before trying to work out your dynamic content strategy it’s worth thinking about a slightly simpler 

model – non-personalized static content.  

Consider content stored within Sitecore; it’s not going to be static. Editors will be making changes and 

depending on your publishing strategy will be pushing this content periodically to the customer facing 

site. This introduces an interesting challenge – how do you ripple out these changes to all consumers? 

The more copies of the data that are stored the more places that need updating when publishes 

complete. 

The table below shows a variety of approaches & options for scaling up how you choose to distribute 

content. Note, the pros and cons don’t consider things like resiliency, DR or failover. 

Technology / approach - Pros - Cons 

CDN’s 
Selected content is proxied 
and edge cached by a CDN 
provider. 

- Globally distributed content: 
improves latency and 
performance for customers  
- Device optimized content 
- Reduces load onto your origin 
 

- Decaching post publish requires 
feedback loop with CDN 
- Your CDN provider imposes the 
criteria and options for cache keys 
- Purging item by item from the 
cache requires additional logic 

Interim content repository 
An interim repository is 
used to cache and manage 
the state of content. Edge 
applications consume 
content from this 
repository. 

- Content can be cached in 
stores specifically scaled and 
designed for purpose 
- These stores can be globally 
distributed 

- Requires custom development to 
both publishing, consumption and 
the repository itself 
- Decaching post publish requires 
feedback loop 
- Additional kit required and comes 
at a price 
- Sitecore is a content repository, 
this duplicates its function 

Custom caches 
Content is served from 
custom caches. Publishes 
explicitly clear the caches. 

- You have full control over 
what is being cached and for 
how long 
- Decaching post publish can be 
built in 

- Requires custom development 
- Needs server resources to run & 
store the cached data 
- Purging specific items requires 
additional logic 

Sitecore caches 
Out the box Sitecore 
caches. These store things 
like data, items and html 

- Out the box offering within 
Sitecore 
- Automatically updated post-
publish 

- Capacity limited by the size of the 
boxes 
- Needs server resources to store the 
cached data 



  

 

 

4 

 

- Partial decaching out the box - Vulnerable to application restarts 
No caches - A brave move – there are very 

few advantages of this 
approach 

- As load increases you have no 
guard against your resources e.g. 
databases will come under more and 
more load 

Render content to disk 
At the point content is 
published you generate a 
static version which is then 
served to the user 

- Content can be served quickly 
off disk 
- Databases and other content 
aggregation resources will 
subsequently receive a lot less 
load 
- Tolerant to application restarts 

- Custom functionality required 
during publishing to generate the 
files 
- Disk space required to store all the 
content 
- Extra load on the system that 
generates the files 
- Purging strategy required for old 
entries 
- Decaching (after publishes) 
requires purging strategy 

Vertical scaling 
Add more grunt – bigger 
boxes, more CPUs, more 
RAM, faster and more disks 

- Larger boxes can handle more 
requests 
- No additional server licenses 
required 

- Additional kit comes at a price 
- Bigger webservers also need bigger 
databases. There will eventually be a 
limit that a single database server 
can handle. 

Horizontal scaling 
Add more boxes, or 
clusters of boxes – this 
would require boxes for 
the application and 
databases. 

- More boxes can handle more 
requests 
- Easy to pull clusters in and out 
of the customer facing 
infrastructure for things like 
deployments & upgrades 

- Publishing content to more clusters 
requires either more publishing 
targets or alternative content 
distribution channels 
- Additional kit comes at a price 
- More server licenses required 

TABLE 1 – PROS AND CONS OF DIFFERENT SCALING OPTIONS  



  

 

 

5 

 

Let’s get personal 
What is a personalized page? Chances are this will vary client by client, project by project and even page 

by page.  

During a request we know something about the user. This could be as detailed as every single page view 

and order summary through to simply the presence of a cookie or querystring parameter. This 

information is then used to influence the composition of the page. 

What do you need to personalize a page? 

Before deciding where and how to compose the pages its worth considering the make-up of a 

personalized page. 

The content 

Sitecore’s whole foundation is built around being a Content Management System so this should be 

pretty simple. This could be e.g. html, images, scripts, styles and more. 

Information about the user 

During the scope of a request we’ve identified the current user. What else do we know about them? 

They phoned the help centre to ask about a new zoom lenses. They requested a brochure on high-end 

cameras. They browsed the high-end lens section of the site. xDB contains, or at least can contain all this 

information. 

The rules 

Why should we show high-end lens adverts to one user and compact camera adverts to the next? We 

have information about the user and therefore need to run some rules against this data. In its simplest 

form this could be something like: 

If (user.HighEndCameras == true) then content = ‘Have you seen our latest high end lens. Click here for 

more’.  

Note, this is an over simplification however highlights the fundamental concept of the rules. 



  

 

 

6 

 

Where to show the content? 

In the lifecycle and construction of a Sitecore page, components are configured and positioned via 

placeholders, datasources and rendering parameters. This is why you might see adverts to the right of 

the content. The content is in one placeholder, the adverts another. 

When to show the content? 

We have the content, we have the knowledge of the user and we have the rules. Therefore if we 

evaluate the three together we know when to show our user their high-end lens advert.  

There is one scenario: what if none of the rules evaluate? You could either make no changes to the page 

or fallback to default content. 

How to show the content? 

The content is no different to any other content on the site. It will contain text, links, images etc. so can 

be rendered in the same manner as the rest of the page. 

How to enrich the content? 

This really depends on your approach and the type of data you need to display. An example would be: 

Sitecore is the master repository for advert content. All the equipment prices come from another external 

system. When do we aggregate the content and prices so that the advert shows: ‘Check out our latest 

high-end lens. Now only £941’.  

This kind of customization adds yet another parameter to the variability of the data. Not only is the 

content user specific but also varies based on another external system. This could have its own rate of 

variance e.g. prices are refreshed and re-imported every N minutes. 

Where should page composition occur? 

Typically content will flow from the server – in our case served by an asp.net Sitecore application. If your 

application is configured to use them, through a set of proxies & CDN’s and finally ends up at the client’s 

browser. 

In Sitecore the default behavior for composing personalized content is at the server. Content is 

aggregated, rendered and finally sent to the client as a full page.  



  

 

 

7 

 

Where to run the rules? 

In order to evaluate that our user sees adverts tailored to their needs we need to run some rules. The 

default behavior within Sitecore is that these are evaluated at the server during the page composition 

and rendering phase of a request.  

Let’s consider the options: 

At the server per request 

Each page load you gather information about the current request and current user. Based on the 

request the page layout and component configurations are retrieved. If any component requires 

personalization its rules are evaluated. If the rules require user information this is retrieved from xDB & 

your xDB session provider. 

Pros: 

 This is out the box Sitecore behavior. 

Cons:  

 Functionality is coupled to the performance of an ever growing xDB mongo repository. 

 It’s tricky to slice the application in order to layer caching. Caching certain layers of the 

application offers the benefit that performance isn’t compromised under high load. 

 Turning off personalization under load is not trivial. 

 Edge-cachability of the page becomes tricky. Note, this depends on the number of permutations 

of the page that the rules evaluate to. If this is a small subset then edge-caching per permutation 

is feasible. However if this varies for every user then edge-caching isn’t recommended. 

Pre-generate the permutations 

Sitecore offers several options for detecting when content has been saved or published. An example 

would be the item:saved event. When content is saved or published you generate the permutations of 

the widgets, or even better pages upfront. When users then request these pages they have already been 

personalized. 

Pros: 

 You don’t have to evaluate the personalization rules every request. However you still need to 

select the correct outcome for the current user. 



  

 

 

8 

 

Cons:  

 You need to store all the permutations of the outcomes – be it components or pages. 

 You need to generate all the permutations for all combinations of users. The more parameters - 

the more permutations. 

 As the content gets more personal e.g. data specific to just one user, the number of 

permutations rockets. 

 The more permutations stored the more entries that need invalidating or updating post publish. 

 Something needs to generate all these component snippets or pages. Post re-publish this set 

could be huge and thus would put high strain on the application responsible for generation. 

Distributed personalization 

The responsibility for personalizing content is removed from the core content application. Examples 

could be: custom external services, custom proxies, external providers or even CDN’s. 

Pros: 

 Can be tailored for specific needs in terms of capacity and performance. 

 Easier to turn off as less baked into the core application. 

 If a CDN is used, global distribution becomes easier. 

Cons:  

 The more duplicates of the data the harder de-caching becomes post-publish. 

 You are potentially holding configuration data in more than just the CMS. Admin users would 

need to know where to edit content vs rules vs presentation logic 

 Requires a large amount of custom development. 

At the client 

Rather than composing the page and associated components at the server you move as much as 

possible to the client. Each aspect of the personalization is dissected and exposed by the server. This is 

then consumed and composed at the client. 

Pros: 

 Serving the initial base page can reap all the rewards that CDN’s or custom edge caching can 

offer. 

 Not only can the base page be edge cached, the same applies to the feeds that serve the 

content and the rules. 



  

 

 

9 

 

 Each application component (base html, rule & content feed, contact feed) can be scaled and 

tuned independently. 

 The client is doing the work and evaluating the rules. The origin has even less to do. 

 We can turn off the personalization when required. 

 If issues arise we can guard against page composition errors via things like circuit breakers over 

the feeds. 

Cons:  

 By moving the rules to the client you are putting more work in the hands of the device. Older 

less powerful mobile devices will take longer to evaluate the rules than a high-spec desktop 

machine. 

 Updates become trickier as you need to keep the client store that holds the Contact information 

in sync with xDB. 

 Depending on the approach taken the number of ajax requests can grow as you personalize 

more of the page. However, this could be designed so that things are batched into groups of 

content & rule requests. 

 You need to build this approach on top of Sitecore and requires custom coding. 

 Certain information isn't accessible from javascript e.g. request headers. You get a rich set of 

parameters available in javascript: cookies, url and querystring, local storage etc. but certain 

parameters aren’t accessible. Most of these could be worked around by moving the scope of 

where the parameters and their associated content exists. Note, to ensure the rules are 

javascript compliant you can create custom rule groups – this ensures that only selected rules are 

available to the editors. 

 The default behavior for logging visits and interactions will be wrong as all the requesting urls 

will be the feeds and not the source pages. 

 Triggering page events and goals will require custom implementations to handle the flow of 

data into xDB. 

 Your client implementation will need to handle the behavior of what to do if no rules match, the 

simplest being no change is made to the base html. 

What to store in each scenario? 

There are several options for where to store things, in each scenario what do we want to store?  

The following criteria are worth considering:  



  

 

 

10 

 

 The number of permutations of the output & storage requirements. 

 The complexity of the option. 

 The overhead required to generate permutations. 

 The work still required to select and then render the output based on the request and 

knowledge of the user.  

 The ease of updates post-publish and during user interaction. 

 The range of parameters available for personalization. 

 

Location - Pros - Cons 

Full page 
A full version of every page and its 
permutations is composed & stored 

- Can be edge-cached as long 
as cache provider can 
determine which variant to 
serve to each user 
 

- Has the highest number of 
output permutations 
- Server side page 
construction required 

Full page and then by widget 
A full version of the underlying page 
is composed with cached versions of 
each personalized widget 

- Out the box Sitecore 
behavior 

- Has a high number of 
output permutations 
- Server side page 
construction required 

Segmented view of the data 
A custom cache stores a subset of 
permutations of every personalized 
page. This subset is based on high-
level segments of the data 

- Edge caches can globally 
distribute the page variants 

- Limited scope for 
personalization 

Feeds and cookies 
Base html is served to the client. 
Cookie information then provides 
keys to access feeds of cookie 
specific rules and content. 

- No base page blocking 
- External factors can influence 
personalization e.g. cookies 
updated elsewhere dictate 
behavior 
- Feeds can be cached 

- Limited scope for 
personalization 
- Custom code required 
- Restriction on scope of 
rules e.g. access to headers 

Feeds and client composition 
Base html is served to the client. 
Cached xDB information then 
provides keys to access feeds of 
specific rules and content. 

- No base page blocking 
- Full xDB contact knowledge 
can be used 
- Each feed can be scaled and 
in the most-part cached 
- External factors can influence 
personalization e.g. cookies 
updated elsewhere dictate 
behavior 

- Custom code required 
- Restriction on scope of 
rules e.g. access to headers 
- Updates require sync’ing to 
both the client and server 

TABLE 2 – WHAT TO STORE IN EACH SCENARIO 



  

 

 

11 

 

How to pick what’s best for you? 
Before we answer that it’s worth considering the key factor that influences a lot of the different options 

above: parameters. Now that might sound trivial however plays a big part in deciding which option, or 

set of options is best for you. It’s also important to understand that not one size fits all – different areas 

of your site may well benefit from a mixture of the approaches we’ve discussed. 

How can parameters be so important? 

I’d encourage you to think of the whole system; what goes in and what comes out.  

 How do things vary for one user compared to another? 

 How granular are the rules that run – does every user see a different result? 

 How do other factors influence the system e.g. prices changes invalidating caches; publishes 

leading to content de-caching? 

 What impact does language have on the setup and the number of permutations? 

 Which aspects of the system understand the difference between each user? 

 If relevant, where should currency be used and how does that vary in relation to language? 

 How often does the data about each user change and what can update it? 

 How many users will the system contain? 

 How many permutations of each widget will there be? 

 Does personalization just affect things like adverts or can it influence a user’s journey? 

The list goes on! Undoubtedly it will vary site by site, even page by page and so is important to consider. 

tl;dr 
There are too many options, where do I start? Initially keep it simple and be realistic.  

If you are anticipating every user receives a fully customized page by page experience you need to 

expect more overhead generating all the permutations - chances are this will also reduce the pages 

edge-cachability. However if you keep things simpler and play to your strengths the out the box Sitecore 

functionality will go a long way.  



  

 

 

12 

 

As your traffic increases ensure you provide the infrastructure to match and don’t be scared to shuffle 

things around. Remember, the more you can cache the better. A solution for personalizing adverts in a 

carousel doesn’t necessarily help tailor a user’s journey through a check-out process. 

Remember: Consider the parameters! 

About  
Nick’s worked at True Clarity for over 10 years and been a Sitecore MVP since 2012. During that time 

he’s worked on a wide range of Sitecore and non-Sitecore clients e.g. Asos, easyJet, Dyson, Sophos and 

many more. 

You can find out more online at: http://blog.boro2g.co.uk and http://www.trueclarity.co.uk 

http://blog.boro2g.co.uk/
http://www.trueclarity.co.uk/

